Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): e1-e18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031839

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction is proposed to be caused by endothelial dysfunction in cardiac microvessels. Our goal was to identify molecular and cellular mechanisms underlying the development of cardiac microvessel disease and diastolic dysfunction in the setting of type 2 diabetes. METHODS: We used Leprdb/db (leptin receptor-deficient) female mice as a model of type 2 diabetes and heart failure with preserved ejection fraction and identified Hhipl1 (hedgehog interacting protein-like 1), which encodes for a decoy receptor for HH (hedgehog) ligands as a gene upregulated in the cardiac vascular fraction of diseased mice. RESULTS: We then used Dhh (desert HH)-deficient mice to investigate the functional consequences of impaired HH signaling in the adult heart. We found that Dhh-deficient mice displayed increased end-diastolic pressure while left ventricular ejection fraction was comparable to that of control mice. This phenotype was associated with a reduced exercise tolerance in the treadmill test, suggesting that Dhh-deficient mice do present heart failure. At molecular and cellular levels, impaired cardiac relaxation in DhhECKO mice was associated with a significantly decreased PLN (phospholamban) phosphorylation on Thr17 (threonine 17) and an alteration of sarcomeric shortening ex vivo. Besides, as expected, Dhh-deficient mice exhibited phenotypic changes in their cardiac microvessels including a prominent prothrombotic phenotype. Importantly, aspirin therapy prevented the occurrence of both diastolic dysfunction and exercise intolerance in these mice. To confirm the critical role of thrombosis in the pathophysiology of diastolic dysfunction, we verified Leprdb/db also displays increased cardiac microvessel thrombosis. Moreover, consistently, with Dhh-deficient mice, we found that aspirin treatment decreased end-diastolic pressure and improved exercise tolerance in Leprdb/db mice. CONCLUSIONS: Altogether, these results demonstrate that microvessel thrombosis may participate in the pathophysiology of heart failure with preserved ejection fraction.


Assuntos
Cardiomiopatias , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Trombose , Disfunção Ventricular Esquerda , Animais , Feminino , Camundongos , Função Ventricular Esquerda , Volume Sistólico , Diabetes Mellitus Tipo 2/complicações , Disfunção Ventricular Esquerda/genética , Proteínas Hedgehog , Microvasos , Trombose/complicações , Aspirina
2.
J Am Heart Assoc ; 12(13): e029279, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37345826

RESUMO

Background Although the critical role of pericytes in maintaining vascular integrity has been extensively demonstrated in the brain and the retina, little is known about their role in the heart. We aim to investigate structural and functional consequences of partial pericyte depletion (≈60%) in the heart of adult mice. Methods and Results To deplete pericytes in adult mice, we used platelet-derived growth factor receptor ß-Cre/ERT2; RosaDTA mice and compared their phenotype with that of control mice (RosaDTA) chosen among their littermates. Cardiac function was assessed via echocardiography and left ventricular catheterization 1 month after the first tamoxifen injection. We found mice depleted with pericytes had a reduced left ventricular ejection fraction and an increased end-diastolic pressure, demonstrating both systolic and diastolic dysfunction. Consistently, mice depleted with pericytes presented a decreased left ventricular contractility and an increased left ventricular relaxation time (dP/dtmin). At the tissue level, mice depleted of pericytes displayed increased coronary endothelium leakage and activation, which was associated with increased CD45+ cell infiltration. Consistent with systolic dysfunction, pericyte depletion was associated with an increased expression of myosin heavy chain 7 and decreased expression of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 and connexin 43. More important, coculture assays demonstrated, for the first time, that the decreased expression of connexin 43 is likely attributable to a direct effect of pericytes on cardiomyocytes. Besides, this study reveals that cardiac pericytes may undergo strong remodeling on injury. Conclusions Cardiac pericyte depletion induces both systolic and diastolic dysfunction, suggesting that pericyte dysfunction may contribute to the occurrence of cardiac diseases.


Assuntos
Cardiomiopatias , Conexina 43 , Camundongos , Animais , Conexina 43/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Cardiomiopatias/metabolismo , Coração , Pericitos
3.
Circ Res ; 132(1): 34-48, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448444

RESUMO

BACKGROUND: Lower-limb peripheral artery disease is one of the major complications of diabetes. Peripheral artery disease is associated with poor limb and cardiovascular prognoses, along with a dramatic decrease in life expectancy. Despite major medical advances in the treatment of diabetes, a substantial therapeutic gap remains in the peripheral artery disease population. Praliciguat is an orally available sGC (soluble guanylate cyclase) stimulator that has been reported both preclinically and in early stage clinical trials to have favorable effects in metabolic and hemodynamic outcomes, suggesting that it may have a potential beneficial effect in peripheral artery disease. METHODS: We evaluated the effect of praliciguat on hind limb ischemia recovery in a mouse model of type 2 diabetes. Hind limb ischemia was induced in leptin receptor-deficient (Leprdb/db) mice by ligation and excision of the left femoral artery. Praliciguat (10 mg/kg/day) was administered in the diet starting 3 days before surgery. RESULTS: Twenty-eight days after surgery, ischemic foot perfusion and function parameters were better in praliciguat-treated mice than in vehicle controls. Improved ischemic foot perfusion was not associated with either improved traditional cardiovascular risk factors (ie, weight, glycemia) or increased angiogenesis. However, treatment with praliciguat significantly increased arteriole diameter, decreased ICAM1 (intercellular adhesion molecule 1) expression, and prevented the accumulation of oxidative proangiogenic and proinflammatory muscle fibers. While investigating the mechanism underlying the beneficial effects of praliciguat therapy, we found that praliciguat significantly downregulated Myh2 and Cxcl12 mRNA expression in cultured myoblasts and that conditioned medium form praliciguat-treated myoblast decreased ICAM1 mRNA expression in endothelial cells. These results suggest that praliciguat therapy may decrease ICAM1 expression in endothelial cells by downregulating Cxcl12 in myocytes. CONCLUSIONS: Our results demonstrated that praliciguat promotes blood flow recovery in the ischemic muscle of mice with type 2 diabetes, at least in part by increasing arteriole diameter and by downregulating ICAM1 expression.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores para Leptina/genética , Células Endoteliais/metabolismo , Isquemia/metabolismo , Modelos Animais de Doenças , Reperfusão , Doença Arterial Periférica/complicações , Membro Posterior/irrigação sanguínea , Neovascularização Fisiológica , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL
4.
Front Physiol ; 13: 906272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...